Silicon Triac

BT139/500

500V / 16A

DATASHEET

OEM - Valvo

Source: Valvo Datenbuch 1983

TRIACS (Zweirichtungs-Thyristoren)

A

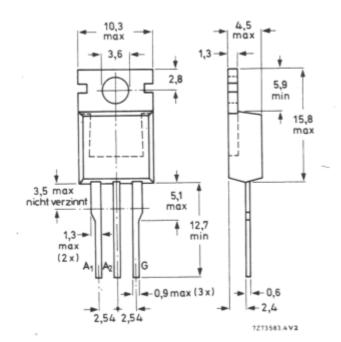
Höchstzulässiger Durchlaßstrom,

Effektivwert

 $I_{T\ RMS}$ 16

Höchstzulässige periodische Spitzensperrspannung

500 / 600 / 800 V ^{±U}D R M


ABMESSUNGEN in mm

Gehäuse: Kunststoff JEDEC TO-220

Der Anschluß A₂ ist mit dem metallischen Montageflansch leitend verbunden.

Zur Befestigung stehen Montageclips (56 363, 56 364) und ggfs. Isolierscheiben (56 367, 56 369) zur Verfügung.

GEWICHT 2 g

SPANNUNGSGRENZWERTE	<u>B</u>	r_13	9/500	/	600	/800	
Höchstzulässige periodische Scheitelsperrspannung: $\pm \mathbf{U}_{\mathrm{D}}$	W M	=	400		400	400	v , ,
Höchstzulässige periodische Spitzensperrspannung, $V_{T} \leq 0,01$: $\pm U_{D}$	R M	=	500		600	800	v ,
Höchstzulässige Stoß- Spitzensperrspannung, t $\stackrel{\leq}{=}$ 10 ms: $\pm U_{D}$	SM	=	500	¹)	600	¹) 800	v
STROMGRENZWERTE							
Höchstzulässiger Durchlaßstrom, Effektiv	wert	,	т		_	16	A
bei ∂ _G ≦ 93°C: Höchstzulässiger Durchlaßstrom, Mittelwe	rt		T	RMS		20	
bei Halbwellenbetrieb, $t_{av} \leq 20 \text{ ms}$, bei $\vartheta_G \leq 79^{\circ}\text{C}$:			IT	AV	=	10	A
Höchstzulässiger periodischer Spitzenstr	om:			R M	=	115	A
Stoßstrom-Grenzwert, Scheitelwerte sinusförmiger Stromhalbwel einer 50 Hz-Periode, bei $\vartheta_J = 120$ °C:	len		IT	S M	=	115	A
Grenzlastintegral bei t = 10 ms:			_	1 ² dt	=	65	A^2s
STEUERKREIS-GRENZWERTE							
Höchstzulässige Steuerverlustleistung, Mittelwert, $t_{av} \leq 20 \text{ ms:}$			P_{G}	AV	=	500	mW
Höchstzulässige Steuerverlustleistung, periodischer Spitzenwert:			P_{G}	М	=	5	V
KENNWERTE							
Durchlaßspannung bei $I_T = 20 \text{ A}$, $\vartheta_J = 25^0$	C:		$\mathbf{U}_{\mathbf{T}}$		<	1,6	V
Sperrstrom bei $U_{D\ W\ M} = 400\ V$, $\vartheta_{J} = 120^{\circ}C$:			ID		<	0,5	mA
Untere Zündspannung bei UDRM max, SJ = 120			$\mathbf{U}_{\mathbf{G}}$	D	=	0,25	v
Obere Zündspannung bei $U_D = 12 \text{ V}$, $\vartheta_J = 2$	25°C:		$^{\mathrm{U}}_{\mathrm{G}}$	т	=	1,5	v

¹⁾ Bei Spannungsspitzen bis 800 V (t $\stackrel{\leq}{=}$ 10 ms) kann der Triac in den leitenden Zustand übergehen – er nimmt hierbei keinen Schaden, sofern die Stromanstiegssteilheit 15 A/ μ s nicht überschreitet.

```
KENNWERTE, Fortsetzung
Oberer Zündstrom I_{GT} bei U_D = 12 V, \vartheta_J = 25 ^{o}C,
Einraststrom I_{HT} bei \vartheta_J = 25^{\circ}C,
Haltestrom I<sub>H</sub> bei 8<sub>J</sub> = 25°C:
    Polarität gegen Anschluß A4:
                                                 A2 pos.
                                                              A<sub>2</sub> pos.
                                                                            A<sub>2</sub> neg. A<sub>2</sub> neg.
                                                  G pos.
                                                               G neg.
                                                                              G neg.
                                                                                            G pos.
    BT 139/...
                                                     35
                                                                   35
                                                                                 35
                                                                                               70
                                                                                                      mA
                                  I_{HT}
                                          <
                                                    40
                                                                  60
                                                                                 40
                                                                                               60
                                                                                                      mA
                                                    30
                                                                  30
                                                                                 30
                                                                                               30
    BT 139/...G
                                                                  50
                                                                                 50
                                                                                              100
                                                                                                      m A
                                  I<sub>HT</sub> <
                                                    60
                                                                  90
                                                                                 60
                                                                                               90
                                                                                                      mA
                                                                  60
                                                    60
                                                                                 60
                                                                                               60
                                                                                                      mA
    BT 139/...F
                                                                  25
                                                                                               70
                                                                                                      mA
                                                                  60
                                                                                 40
                                                                                               60
                                                                                                      m A
                                          <
                                                    30
                                                                  30
                                                                                 30
                                                                                               30
                                                                                                      m A
    BT 139/...E
                                                                                                      mA
                                                                  40
                                                                                               40
                                                                                                      mA
                                                                                                      mA
Kritische Spannungssteilheit
ohne vorangegangene Kommutierung,
                                                   BT 139/...
  bei 8<sub>.j</sub> = 120°C:
                                                                                                    V/μs
                                                                          S<sub>U krit</sub>
                                                   BT 139/...G
                                                                                           100
                                                                                                    V/µs
                                                                          SU krit =
                                                   BT 139/...F
                                                                                            50
                                                                                                    V/μs
                                                                          S<sub>U krit</sub> =
                                                   BT 139/...E
                                                                                            50
                                                                                                    V/µs
                                                                          S<sub>U krit</sub> ≈
Kritische Stromsteilheit
ohne vorangegangene Kommutierung,
    beim Einschalten auf I_T = 20 A
                                                                          S_{I krit} = 30 A/\mu s
    mit I_G = 200 mA, dI_G/d\hat{t} = 0.2 A/\mu s:
Kritische Spannungssteilheit
   \begin{array}{l} {\rm nach}~{\rm I_{T~RMS}} = 16~{\rm A~bei~} \vartheta_{\rm G} = 70^{\rm O}{\rm C} \\ {\rm mit}~-{\rm dI_{T}}/{\rm dt} = 7,2~{\rm A/ms}~({\rm BT~}139/\ldots,~/\ldots{\rm F}) \end{array}
                                                                          S_{U \text{ krit}} = 10 \text{ V/}\mu \text{s}
    bzw. -dI_{T}/dt < 7,2 \text{ A/ms (BT 139/...G)}:
```

THERMISCHE ÆIGENSCHAFTEN

Höchstzulässige Sperrschichttemperatur bei Vollwellenbetrieb:

bei Halbwellenbetrieb:

Lagerungstemperaturbereich:

Wärmewiderstand

zwischen Sperrschicht und Montageflansch,

bei Vollwellenbetrieb:

bei Halbwellenbetrieb:

zwischen Sperrschicht und Umgebung:

Impuls-Wärmewiderstand bei $t_p = 1$ ms:

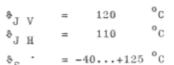
Wärmewiderstand

zwischen Montageflansch und Kühlblech, bei Clipmontage,

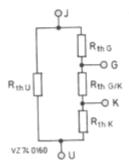
mit Wärmeleitpaste:

$$R_{th G/K} = 0.3 \text{ K/W}$$

mit Wärmeleitpaste und Isolierscheibe 56 367:


$$R_{th~G/K} = 0.8 \text{ K/W}$$

mit Wärmeleitpaste und Glimmerscheibe 56 369:


$$R_{th~G/K} = 2,2 \text{ K/W}$$

ohne Wärmeleitpaste:

$$R_{th~G/K} = 1.4 \text{ K/W}$$

$$R_{th G V} = 1,2 K/W$$
 $R_{th G H} = 1,7 K/W$
 $R_{th U} = 60 K/W$
 $Z_{th G} = 0,1 K/W$

