Silicon NPN Transistor

BC239

preferred for use in low noise AF-amplifier applications

DATASHEET

OEM - Siemens

Source: Siemens Databook 1970/71

BC 237, BC 238, BC 239

NPN-Transistoren

für NF-Vor- und Treiberstufen sowie universelle Anwendung
BC 237, BC 238, BC 239 sind epitaktische NPN-Silizium Planar-Transistoren in Kunststoffumhüllung TO-92 Z (SOT-30 ähnl.) zur Verwendung in NF-Vor- und Treiberstufen. BC 239 ist für rauscharme Vorstufen vorgesehen.
Als Komplementār-Transistoren zu BC 307, BC 308 und BC 309 geeignet.

Typ	Bestellnummer
BC 237 A	Q62702-C276
BC 237 B	Q62702-C277
BC 238 A	Q62702-C278
BC 238 B	Q62702-C279
BC 238 C	Q62702-C280
BC 239 B	Q62702-C281
BC 239 C	Q62702-C282

BC 239 C \quad Q62702-C282
Gewicht $0.25 \quad$ MaBe in mm

Grenzdaten		BC 237	BC 238	BC 239	
Kollektor-Emitter-Spannung	$U_{\text {ces }}$	50	30	30	V
Kollektor-Emitter-Spannung	$U_{\text {ceo }}$	45	20	20	V
Emitter-Basis-Spannung	$U_{\text {EBO }}$	6	5	5	V
Kollektorstrom	$I_{\text {c }}$	100	100	50	mA
Kollektor-Spitzenstrom	$I_{\text {CM }}$	200	200	-	mA
Basisstrom	$I_{\text {B }}$	50	50	5	mA
Sperrschichttemperatur	T_{i}	150	150	150	${ }^{\circ} \mathrm{C}$
Lagertemperatur	T_{s}		bis + 15		${ }^{\circ} \mathrm{C}$
Gesamtverlustleistung	$P_{\text {tot }}$	300	300	300	mW
Wärmewiderstand					
Kollektorsperrschicht - Luft	$R_{\text {th }}$ Ju	≤ 420	≤ 420	≤ 420	grd/W

Statische Kenndaten ($T_{U}=25^{\circ} \mathrm{C}$). Die Transistoren werden nach der statischen Stromverstärkung B gruppiert und mit A, B, C gekennzeichnet s. S. 282. Bei $U_{\mathrm{CE}}=5 \mathrm{~V}$ und untenstehenden Kollektorströmen gelten die nachfolgenden statischen Werte:

B-Gruppe	A	B	C
Typ	BC 237	BC 237	-
	BC 238	BC 238	BC 238
	-	BC 239	BC 239
$\begin{aligned} & \overline{I_{\mathrm{C}}} \\ & \mathrm{~mA} \end{aligned}$	$\begin{gathered} B \\ I_{\mathrm{C}} / I_{\mathrm{B}} \end{gathered}$	$\begin{gathered} B \\ I_{\mathrm{C}} / I_{\mathrm{B}} \end{gathered}$	$\begin{gathered} B \\ I_{\mathrm{C}} / I_{\mathrm{B}} \end{gathered}$
0.01	90	150	270
2	170 (120 bis 220)	290 (180 bis 460)	500 (380 bis 800)
100')	120	200')	400')

1) Diese Werte gelten nicht für $B C 239$

Statische Kenndaten ($T_{U}=25 \mathrm{C}^{\circ}$)

BC 237, BC 238, BC 239	BC 237, BC 238, BC 239					
I_{C}	U_{BE}	I_{C}	I_{B}	U_{CE}	$\left.U_{\mathrm{CE} \text { sat }}{ }^{1}\right)$	$\left.U_{\mathrm{BE} \text { sat }}{ }^{1}\right)$
mA	V	mA	mA	V	V	V
0.1	0.5	10	0.5	5	$0.07(<0,2)$	$0.73(<0,83)$
2	$0.62(0,55$ bis 0.7$)$			5		
100	0.83	$\left.100^{2}\right)$	5	5	$\left.0.2(<0.6)^{2}\right)$	$\left.0.87(<1,05)^{2}\right)$

Statische Kenndaten $\left(T_{\mathrm{U}}=25^{\circ} \mathrm{C}\right)$		BC 237	BC 238	BC 239	
Kollektor-Emitter-Reststrom $\left(U_{\text {CES }}=50 \mathrm{~V}\right.$) Kollektor-Emitter-Reststrom	$I_{\text {ces }}$	$0.2(<15)$	-		nA
$\left(U_{\text {cEs }}=30 \mathrm{~V}\right)$	$I_{\text {cEs }}$	-	$0.2(<15)$	$0.2(<15)$	nA
Kollektor-Emitter-Reststrom $\left(U_{\text {cEs }}=50 \mathrm{~V}: T_{U}=125^{\circ} \mathrm{C}\right)$	$I_{\text {ces }}$	$0.2(<4)$	-	-	$\mu \mathrm{A}$
Kollektor-Emitter-Reststrom					
($U_{\text {ces }}=30 \mathrm{~V}: T_{U}=125^{\circ} \mathrm{C}$)	$I_{\text {ces }}$	-	$0.2(<4)$	$0.2(<4)$	$\mu \mathrm{A}$
Emitter-Basis-Durchbruchspannung ($I_{\text {EBO }}=1 \mu \mathrm{~A}$		> 6	>5	> 5	V
Kollektor-Emitter-Durchbruch					
spannung ($I_{\text {cEO }}=2 \mathrm{~mA}$)	$U_{\text {(bR)CEO }}$	> 45	> 20	> 20	V

Dynamische Kenndaten (T_{U}	$25^{\circ} \mathrm{C}$)	BC 237	BC 238	BC 239	
Transitfrequenz ($I_{\mathrm{C}}=0,5 \mathrm{~mA}$;					
Transitfrequenz ($I_{\mathrm{C}}=10 \mathrm{~mA}$;					
$U_{\text {CE }}=5 \mathrm{~V}: f=100 \mathrm{MHz}$)	f_{\top}	250 (>150)	250 (>150)	300 (>150)	MHz
Kollektor-Basis-Kapazität					
($U_{\text {сво }}=10 \mathrm{~V}: f=1 \mathrm{MHz}$)	$C_{\text {cbo }}$	< 4.5	$<4,5$	< 4.5	pF
Emitter-Basis-Kapazitảt					
$U_{\text {EBO }}=0.5 \mathrm{~V} ; f=1 \mathrm{MHz}$)	$C_{\text {EBO }}$	8	8	8	pF
$\text { Rauschmaß }\left(I_{\mathrm{C}}=0.2 \mathrm{~mA}\right. \text { : }$$U_{\mathrm{CE}}=5 \mathrm{~V}: R_{\mathrm{G}}=2 \mathrm{k} \mathrm{\Omega} \text {; }$					
$\Delta f=30 \mathrm{~Hz}-15 \mathrm{kHz}$)	F	-	-	<4	dB
Rauschmaß ($I_{\mathrm{C}}=0.2 \mathrm{~mA}$:					
$U_{\text {CE }}=5 \mathrm{~V}: R_{\mathrm{G}}=2 \mathrm{k} \Omega$,					
$f=1 \mathrm{kHz} ; \Delta f=200 \mathrm{~Hz}$)	F	$2(<10)$	$2(<10)$	<4	dB

[^0]Dynamische Kenndaten ($T_{\mathrm{U}}=25^{\circ} \mathrm{C}$)
$I_{\mathrm{C}}=2 \mathrm{~mA}: U_{\mathrm{CE}}=5 \mathrm{~V}: f=1 \mathrm{kHz}$

B-Gruppe	A	B	C	
Typ	BC 237	BC 237	-	
	BC 238	BC 238	BC 238	
	-	BC 239	BC 239	
$h_{11 \mathrm{e}}$	2,7 (1,6 bis 4,5)	4.5 (3.2 bis 8.5)	8,7 (6 bis 15)	k Ω
h_{12}	1.5	2	3	10^{-4}
h_{21} e	222 (125 bis 260)	330 (240 bis 500)	600 (450 bis 900)	-
h_{22} 。	18 (<30)	$30(<60)$	60 (< 110)	$\mu \mathrm{S}$

Stromverstarkung $B=f\left(I_{\mathrm{C}}\right)$
$U_{c e}-5 \mathrm{~V}: T_{u}=$ Parameter
(Emitterschaltung)
BC 237 A, BC 238 A

Stromverstarkung $B=f\left(I_{\mathrm{C}}\right)$
$U_{\mathrm{CE}}=5 \mathrm{~V}: T_{U}=$ Parameter
(Emitterschaltung)

Stromverstärkung $B=f\left(I_{\mathrm{C}}\right)$
$U_{\mathrm{CE}}=5 \mathrm{~V}: T_{\mathrm{U}}=$ Parameter
(Emitterschaltung)

IMA

$$
1,0 \mathrm{~V}
$$

BC 237, BC 238, BC 239

BC 237, BC 238, BC 239

Ausgangskennlinien $I_{C}=f\left(U_{C E}\right)$
$U_{\mathrm{BE}}=$ Parameter (Emitterschaltung)

Ausgangskennlinien $I_{\mathrm{C}}=f\left(U_{\mathrm{CE}}\right)$:
$I_{\mathrm{B}}=$ Parameter (Emitterschaltung)

Ausgangskennlinien $I_{C}=f\left(U_{C E}\right)$:
$U_{\mathrm{es}}=$ Parameter (Emitterschaltung)

Ausgangskennlinien $I_{\mathrm{C}}=f\left(U_{\mathrm{CE}}\right)$: $U_{B E}=$ Parameter (Emitterschaltung)

BC 237, BC 238, BC 239

Ausgangskennlinien $I_{\mathrm{C}}=f\left(U_{\mathrm{CE}}\right)$
$I_{\mathrm{B}}=$ Parameter (Emitterschaltung)

Sättigungsspannung $U_{\text {CE sat }}=f\left(I_{\mathrm{C}}\right)$
$B=20: T_{u}=$ Parameter
(Emitterschaltung)

BC 237, BC 238, BC 239

Kollektor-Basis-Kapazitāt $C_{\text {CBO }}=f\left(U_{\mathrm{CBO}}\right)$
Emitter-Basis-Kapazität $C_{\mathrm{EBO}}=f\left(U_{\mathrm{EBO}}\right)$

BC 237, BC 238, BC 239

Spannungsabhăngigkeit der h -Parameter
$H_{\mathrm{e}}=\frac{h_{e}\left(U_{\mathrm{CE}}\right)}{h_{\mathrm{e}}\left(U_{\mathrm{CE}}-5 \mathrm{~V}\right)}=f\left(U_{\mathrm{CE}}\right)$:
BC 237

Spannungsabhängigkeit der \mathbf{h}-Parameter
$H_{e}=\frac{h_{e}\left(U_{\mathrm{CE}}\right)}{h_{\mathrm{e}}\left(U_{\mathrm{cE}}-5 \mathrm{~V}\right)}=f\left(U_{\mathrm{cE}}\right):$

[^0]:) Der Transistor ist so weit ūbersteuert, daß die statische Stromverstärgung auf einen Wert von $B=20$ abgesunken ist.
 ${ }^{\text {r }}$) Diese Werte gelten nicht für BC 239

