Silicon N-P-N Epitaxial-Base High-Power Transistor

Features:

- High dissipation capability
- Maximum safe-area-of-operation curves
- High voltage
- High gain at high current

Applications:

- High-fidelity amplifiers
- Series and shunt regulators
- Linear power amplifiers

The RCA9166 Series are ballasted epitaxial-base silicon n-p-n transistors featuring high gain at high current and high voltage. They differ from each other in voltage ratings, safe-operating area (SOA) ratings and the currents at which the parameters are controlled.

The RCA9166 Series are supplied in the JEDEC TO-204MA hermetic steel package.

Formerly Types are the TA9166 Series.

Terminal Designations

MAXIMUM RATINGS, Absolute-Maximum Values:

V _{CBO}	-	V
$U_{CER}^{(SUS)}$ R _{BE} = 100Ω	275	V
V _{CEO} (SUS)	250	V
V _{EBO}	5	V
Ι _c	16	А
I _{CM}	30	А
۱ _в	5	A
$P_T T_C \le 25^{\circ}C$	250	W
$P_T T_C > 25^{\circ}C$ Derate linearly	1.43	W/°C
T _{stg} T _J	-65 to +200	°C
T_L At distance ≥ 1/32 in. (0.8mm) from seating plane for 10s max.	230	°C

Electrical Characteristics, at Case Temperature $(T_c) = 25^{\circ}C$

Unless Otherwise Specified

CHARACTERISTIC		TEST CONDITIONS		LIMITS		
		VOLTAGE V dc	CURRENT A dc	RCA9166A		UNITS
		V _{CE}	I _c	Min.	Max.	
I _{CEO}		200		-	1	mA
I _{CER} R _{BE} = 100Ω, T _C = 150°C		200		-	4	
h _{FE}		4	3°	30	-	
		4	5°	20	-	
		4	8°	-	-	
		4	16°	3.2	-	
V _{CEO} (sus) b			0.1	250	-	V
$V_{CER}^{(sus) b}$ R _{BE} = 100 Ω			0.1	275	-	
V _{EBO} I _E =1mA				5	-	
U _{BE}		4	3°	-	2	
U _{CE} ^(sat) IB=	0.3A		3°	-	1	
	0.8A			-	-	
	3.2A			-	-	
I _{S/b} t _p =0,5s nonrep.		80		3	-	А
h _{fe} f=1MH:	z	10	1	4	20	
f _T		10	1	4	20	MHz
C _{OB}		10ª		-	500	pF
R _{0JC}		10	10	-	0.7	°C/W

Note a:

 $V_{\rm CB}$ CAUTION Sustaining voltages $V_{\rm CER}^{\rm (sus)}$ and $V_{\rm CEO}^{\rm (sus)}$ MUST NOT be measured on a curve tracer, see Fig. 10 Pulse duration = 300µs, duty factor = 1.8% Note b:

Note c:

RCA9166A

- continous collector current \mathbf{I}_{C} - peak collector current $I_{\rm CM}$
- collector-cutoff current with specified resistance between base and emitter I_{CER}
- collector-cutoff current with specified circuit between base and emitter I_{CEX}
- continous base current I_{B}
- $\mathsf{I}_{\mathsf{EBO}}$ - emitter-cutoff current, collector open
- forward-bias, second break-down collector current I_{S/b} V_{CBO}
 - collector-to-base voltage, emitter open
- $V_{CEO}^{(suc)} = \text{collector-to-emitter voltage, base open}$ $V_{CEO}^{(suc)} = \text{collector-to-emitter sustaining voltage, base open}$ $V_{CER}^{(suc)} = \text{collector-to-emitter sustaining voltage with specified resistance between base and emitter}$
- emitter-to-base voltage, collector open V_{EBO}
- V_{BE} V_{CE}sat - base-to-emitter voltage

ſŤ

|h_{fe}| R_{BE}

 $\mathsf{R}_{_{\!\theta \mathsf{JC}}}$

P_T T_C

 $\mathsf{T}_{\mathsf{stg}}$ ΤJ

T_L

θ

- collector-to-emitter saturation voltage
- C_{OB} - common-base output capacitance
 - gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope)
- h_{FE} - dc forward-current transfer ratio
 - magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio
 - external base-to-emitter resistance
 - thermal resistance, junction-to-case
 - transistor dissipation at specified temperature
 - case temperature
 - storage temperature
 - operating (junction) temperature
 - lead temperature during soldering
 - conduction angle