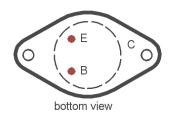
10-Ampere N-P-N Monolithic Darlington Power Transistor

RCA8766C

Features:

Operates from IC without predriver
Low leakage at high temperature

- High reverse second-breakdown
- capability


- Applications:
- Power Switching
- Solenoid Drivers
- Automotive Ignition
- Series and shunt regulators

The RCA 8766 Series are monolithic n-p-n silicon darlington transistors designed for automotive electronic power applications. The pi-nu construction of these device provides good forward and reverse second-breakdown capability; their high gain makes it possible for them to be driven directly from integrated circuits.

The device in the series differ primarily in voltage ratings and in current at which the dc gain is specified.

The RCA-8766 Series are supplied in the JEDEC TO-3 hermetic steel package. Formerly Types are the TA8766 Series.

Terminal Designations

JEDEC TO-3

	osolute-Maximum Values:		
V _{CBO}	400	V	
$U_{CER}^{(SUS)}$ R _{BE} = 50 Ω	400	V	
V _{CEO} (SUS)	400	V	
V _{EBO}	5	V	
Ι _c	10	A	
I _{CM}	15	A	
Ι _Β	1	A	
$P_T T_C \le 25^{\circ}C$	150	W	
Ρ _T T _C > 25°C	derate linearly 1	°C/W	
$T_{stg}T_{J}$	-65 to +175	°C	
T _L At distances ≥ 1/8 in. (3.17mm) from case for 10s max.	235	°C	

CHARACTERISTIC	TEST CO	TEST CONDITIONS			LIMITS	
	VOLTAGE V dc	CURRENT A dc		RCA8766C		
	V _{CE}	I _c	I _B	Min.	Max.	
$I_{CER} R_{BE} = 50\Omega$	400			-	1	— mA
T _C = 150°C	400			-	10	
I _{EBO} V _{BE} = -5V		0		-	60	mA
$V_{CEO}^{(sus)}$		0.2ª	0	400	-	V
h _{FE}	3	4 ^a		100	-	
V _{BE}	3	4 ^a		-	2.5	v
V (cot)		4 ^a	0.133ª	-	1.5	v
$V_{CE}^{(sat)}$		8 ^a	0.5ª	-	2.5	v
V _F		7 ^a		-	2	V
h _{fe} f = 1MHz	5	1		10	-	
I _{S/b} t = 1s, nonrep.	30			5	-	A
R _{0JC}				-	1	°C/W

- continous collector current I_{C}

- peak collector current I_{CM}
- collector-cutoff current with specified resistance between base and emitter I_{CER}
- continous base current I_B
- emitter-cutoff current, collector open I_{EBO}
- forward-bias, second break-down collector current I_{S/b}
- V_{CBO} - collector-to-base voltage, emitter open
- $V_{CEO}^{(sus)} \text{collector-to-emitter voltage, base open} \\ V_{CEO}^{(sus)} \text{collector-to-emitter sustaining voltage, base open} \\ V_{CER}^{(sus)} \text{collector-to-emitter sustaining voltage with specified resistance between base and emitter}$
- V_{EBO} - emitter-to-base voltage, collector open
- base-to-emitter voltage
- V_{BE} V_{CE}sat - collector-to-emitter saturation voltage
- diode forward voltage drop V_F
- dc forward-current transfer ratio \mathbf{h}_{FE}
 - magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio
 - external base-to-emitter resistance
 - thermal resistance, junction-to-case
- $\begin{bmatrix} |h_{fe}| \\ R_{BE} \\ R_{\theta JC} \\ P_T \\ T_C \\ T_{stg} \\ T_J \\ T_L \\ \theta \end{bmatrix}$ - transistor dissipation at specified temperature
 - case temperature
 - storage temperature
 - operating (junction) temperature
 - lead temperature during soldering
 - conduction angle