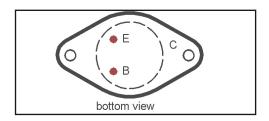
High-Voltage, High-Power Silicon N-P-N Power Transistor

RCA431

For Switching and Linear Applications in Military, Industrial and Commercial Equipment

Features:

- Maximum safe-area-of-operation curves
- Low saturation voltage: $V_{CE}^{(sat)} = 0.8V \text{ max}$
- High voltage rating: V_{CEO}(sus) = 325V
- High dissipation rating: $P_T = 125W$
- Steel Hermetic TO-204MA Package


Applications:

- **■** Inverter
- **■** Deflection Circuits
- Switching Regulators
- High-Voltage Bridge Amplifiers
- **■** Ignition circuits

The RCA431 is an epitaxial silicon n-p-n transistor utilizing a multiple-emitter-site structure. The transistor features high breakdown-voltage values make them especially suitable for use in inverters, deflection circuits, switching regulators, high-voltage bridge amplifiers, ignition circuits and other high voltage switching applications.

The RCA431 is supplied in the steel JEDEC TO-204MA hermetic package.

Terminal Designations

JEDEC TO-204MA

MAXIMUM RATINGS, Absolute-Maximum Values:

V _{CBO}	400	V	
V _{CEO} (sus)	325	V	
V _{EBO}	5	V	
I _c	7	А	
I _{cm}	10	А	
I _B	2	А	
P _T T _C ≤ 25°C	125	W	
P _T T _C > 25°C Derate linearly	0.714	W/°C	
$T_{stg}T_{J}$	-65 to +200	°C	
T_L At distance ≥ 1/32 in.(0.8mm) from seating plane for 10s max.	230	°C	

www.web-bcs.com Source: RCA SSD-220C (1981)

Electrical Characteristics, at Case Temperature $(T_C) = 25^{\circ}C$

Unless Otherwise Specified

Characteristic Symbol	Test Conditions							
	Voltage (V)		DC Current (A)		Limits			Units
	V _{CE}	V _{BE}	I _c	I _B	Min.	Тур.	Max.	
I _{CEO}	300				-	-	0.25	mA
I _{CEV}	400	-1.5			-	-	0.25	
I _{CEV} (TC=125°C)	400	-1.5			-	-	0.5	
I _{EBO}		-5			-	-	5	
h _{FE}	5		1 ^a		30	-	90	
	5		2.5ª		10	-	-	
V _{CEO} (sus)b (Fig. 3)			0.1		325 ^b	-	-	·
V _{BE} (sat)			2.5ª	0.5	-	1.1	1.5	
V _{CE} ^(sat)			2.5ª	0.5	-	0.25	0.7	
I _{S/b} c Pulse duration (non-repetitive) = 1s	150				0.1	-	-	A
f _T	10		0.2		-	4	-	MHz
t _r			2.5	0.5 (IB1)	-	0.35	-	
t _s			2.5	0.5(IB1) ^d	-	1.8	-	μs
t _f			2.5	0.5(IB1)d	-	0.4	-	
$R_{\scriptscriptstyle{ ext{ heta}JC}}$	10		5				1.4	°C/W

Pulsed: pulse duration ≤ 350µs, duty factor = 2%

The sustaining voltage $V_{CEO}^{(sus)}$ *MUST NOT* be measured on a curve tracer and measured by means of the test circuit shown in Fig.3 b CAUTION:

I_{S/b} is defined as the current at which second breakdown occurs at a specified collector voltage with the С emitter-base junction forward-biased for transistor operation in the active region

d $I_{B1} = -I_{B2} = \text{value shown}$

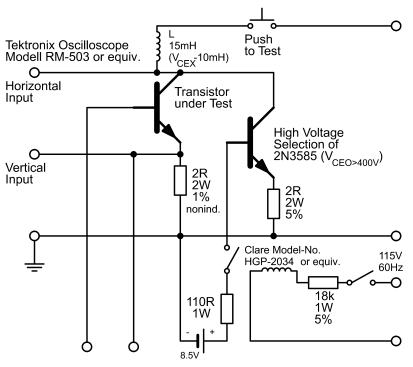
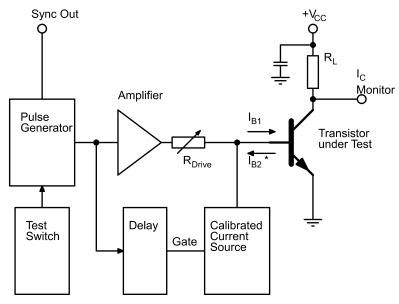



Fig. 3 Circuit used to measure sustaining voltage, $\rm V_{\rm CEO}^{(sus)}$

 $^{\star}~\text{I}_{\text{B1}}$ and I_{B2} measured with tektronix current probe P6019 or equivalent

Circuit used to measure switching time (t_r,t_s,t_f)

Source: RCA SSD-220C (1981)

RCA431

- continous collector current - peak collector current I_{CM}

- collector-cutoff current with specified resistance between base and emitter I_{CER} - collector-cutoff current with specified circuit between base and emitter I_{CEX}

- continous base current

- emitter-cutoff current, collector open I_{EBO}

- forward-bias, second break-down collector current $I_{S/b}$

- collector-to-base voltage, emitter open V_{CBO} $V_{\text{CEO}}^{\text{CBO}}$ - collector-to-emitter voltage, base open $V_{\text{CEO}}^{\text{(sus)}}$ - collector-to-emitter sustaining voltage, base open

 $V_{\text{CER}}^{(\text{sus})}$ - collector-to-emitter sustaining voltage with specified resistance between base and emitter

- emitter-to-base voltage, collector open V_{EBO}

- base-to-emitter voltage

V_{BE}_{Sat} - collector-to-emitter saturation voltage - common-base output capacitance C_{OB}

COBO - open circuit common-base output capacitance

fΤ - gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope)

- dc forward-current transfer ratio h_{FE}

- magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio |h_{fe}|

 R_{BE} - external base-to-emitter resistance $R_{\theta JC}$ P_{T} - thermal resistance, junction-to-case

- transistor dissipation at specified temperature

t_f
t_r
t_s
T_C - fall time - rise time - storage time - case temperature - storage temperature

- operating (junction) temperature - lead temperature during soldering

- conduction angle

Source: RCA SSD-220C (1981) www.web-bcs.com